Банк(и): "линейный" vs "разделенный". ID:8961 |
Чт, 30 апреля 2009 16:41 [#] |
|
_Ali_ |
|
(иконки IM)
Форумы CasinoGames
|
|
<font color="black"><font face="Calibri">Предыстория: </font></font><font color="black"><font face="Verdana"><font color="blue"><font face="Calibri">http://forum.cgm.ru/blackjack/120765-kelli_v_realnoi_zhizni.html</font></font ></font></font>
<font color="black"><font face="Calibri">Я, наверное, все-таки скорее тугодум, но если не отпишусь, то эта тема меня не отпустит никогда. Приношу извинения за создание отдельного поста, но хочется перевести разговор в несколько иное русло. Основная мысль – подтвердить, что «разбитый» по частям и «линейный» банк, с одинаковыми рисками, по характеристикам одинаковы. На всякий случай, предупрежу, что выражаюсь, как умею, институтов не заканчивал. Заранее благодарен за конструктивную критику.</font></font>
<font color="black"><font face="Calibri">На просторах иннета давно натолкнулся :</font></font>
Цитата: |
<font color="black"><font face="Cambria">Kaufman gives us the following formula for calculating the risk of ruin: </font></font>
<font color="black"><font face="Cambria">risk_of_ruin = ((1 - Edge)/(1 + Edge)) ^ Capital_Units</font></font>
<font color="black"><font face="Cambria">Edge is the probability of a win.</font></font>
| <font color="black"><font face="Calibri">Заменим «1» на СКО, Edge – это МО игры и Capital_Units на Банк/СКО. Получим формулу TotalROR, приводимую однажды здесь (точно не помню первоисточник, но формула «удобоваримая» для понимания следующей за ней).</font></font>
<font color="black"><font face="Calibri">[1] Риск [Общий] = ((СКО-МО)/(СКО+МО))^(Банк/СКО) </font></font>
<font color="black"><font face="Calibri">или проще Р[Oбщий] = (q/p)^n</font></font>
<font color="black"><font face="Calibri">Условия задачи:</font></font>
<font color="black"><font face="Calibri">Одна игра, два игрока с одинаковыми банками по 100 000$. Игра продолжается до удвоения капитала, то есть, общий Банкролл у каждого в итоге должен составить 200 000$. Либо его (Банка) проигрыша. Сравнить характеристики "линейного" и "разбитого" по частям Банков.</font></font>
<font color="black"><font face="Calibri">Игра с характеристиками:</font></font>
<font color="black"><font face="Calibri">МО = 0.01</font></font>
<font color="black"><font face="Calibri">Д = 5</font></font>
<font color="black"><font face="Calibri">СКО = sqrt(Д)</font></font>
<font color="black"><font face="Calibri">Банк = 100 000$ (заданный изначально капитал)</font></font>
<font color="black"><font face="Calibri">Рассмотрим игру Игрока1, который дробит по частям свой банк. Возможно, я переборщил или не так "раздробил", но я отталкиваюсь от:</font></font>
Цитата: |
<font color="black"><font face="Calibri">Вовсе не надо ставить 95 вместо 100, удивляя при это персонал и тормозя игру, но всю жизнь играть по неизменной….</font></font>
| <font color="black"><font face="Calibri">…, и:</font></font>
Цитата: |
<font color="black"><font face="Calibri">…имеется ввиду пересчет оптимальных ставок после каждого значительного колебания банка. Я сказал ЗНАЧИТЕЛЬНОГО потому, что понятно, что при НЕЗНАЧИТЕЛЬНЫХ колебаний нет смысла пересчитывать оптимальные ставки.</font></font>
| <font color="black"><font face="Calibri">Итак. Игрок_1 с Банкроллом в 100 000$ вступает в игру, предварительно раздробив свой банк по частям: 50 000$, 25 000$ и 25 000 с начальным беттингом Kelly_f = 1. Ставки соответственно: </font></font>
<font color="black"><font face="Calibri">Opt_Kelly_Bet = Bank$*f*(EV/D) = 200$</font></font>
<font color="black"><font face="Calibri">При стартовом беттинге получаем Риск [Общий] = 13,53%. Но Игрок_1, в случае проигрыша 50% Банка (50 000$ или 250 анте) снижает ставки в 2раза, те начинает играть по 100$. Далее, если он проигрывает еще 50% от оставшегося банка (25 000$ или 250 анте) то продолжает игру уже по 50$. Для каждого банка есть «контрольная точка». Изменив (уменьшив) беттинг в 2раза мы увеличим его обратно только в случае достижения контрольной точки (например, играем по 100$ и увеличиваем ставку до 200$ только тогда, когда общий банк не достигнет начального состояния, те 100 000$; если играем по 50$, то играем по 100$ только когда на руках будет 50 000$). Итого у нас получается «раздробленный» Банк следующего вида:</font></font>
<font color="black"><font face="Calibri">50 000$ по 200$ (250 ante); 25000$ по 100$ (250 ante); 25000$ по 50$ (500 ante). Итого 1000 анте:</font></font>
<font color="black"><font face="Calibri">Риск [Общий] (считаем в юнитах) = ((2,23–0,01)/(2,23+0,01))^(1000/2,23) = 0,018315</font></font>
<font color="black"><font face="Calibri">Можно пошагово для каждого банка посчитать в $. Далее, если можно, я дам свои имена частям банка (для удобства). Самый первый банк в 50 000$ (по 200$) – это наш «Авангард», как бы атакующий. Это банк, который будет нам зарабатывать. Оставшиеся 2 части общего Банкролла по 25 000$ каждая (по 100$ и 50$) – это «Тыл». Они будут выступать в роли амортизации, защиты общего Банка. Проще: увеличить банк можно только играя «авангардом»,тыловые нужны только амортизировать риски и вернуть в изначальное состояние «авангард». Так как игра этими тремя частями банка – есть события зависимые, то риски каждого перемножаем: </font></font>
<font color="black"><font face="Calibri">Риск [Общий] = Риск [Банк_авангард] * Риск [Банк_тыл1] * Риск [Банк_тыл2] =0,3679…*0,3679…*0,1353… = 0,018315</font></font>
<font color="black"><font face="Calibri">Знакомая цифра. При подобном разбиении банк из Келли_1 с его рисками (0,1353) превращается в банк с рисками Келли_1/2 (0,01831). Это вполне логично, так как, разбив общий Банкролл на 3 части, он из 500 анте превратился в банк из 1000 анте.</font></font>
<font color="black"><font face="Calibri">________________________________________</font></font>
<font color="black"><font face="Calibri">[2] Риск [Достижение "b", прежде "a"] =1 – [ (1-(q/p)^(Y/SD))/(1-(q/p)^((Y+X)/SD))]</font></font>
<font color="black"><font face="Calibri">Используемая</font></font><font color="black"><font face="Calibri"> Bryce Carlson (Blackjack for Blood)</font></font>
<font color="black"><font face="Calibri">, где q=СКО-МО, p=СКО+МО, Y=Банк, Х=Ожидаемый Результат, SD=sqrt(Д)=СКО.</font></font>
<font color="black"><font face="Calibri">Так как, по условиям задачи, мы играем до удвоения ОБЩЕГО банка, то считаем по формуле [2] и до удвоения считаем только «авангард». В соответствии со ставками (200$) переведу в денежное отношение:</font></font>
<font color="black"><font face="Calibri">q$/p$ = (447.21-2)/(447.21+2) = 0.9911</font></font>
<font color="black"><font face="Calibri">Y$/SD$ = 50000/447.21 = 111.8</font></font>
<font color="black"><font face="Calibri">(Y$+X$)/SD$ = (50 000+100 000)/447.21 = 335.41</font></font>
<font color="black"><font face="Calibri">[a] (q/p)^(Y/SD) = 0.9911^111.8 = 0.3678</font></font>
<font color="black"><font face="Calibri">(q/p)^((Y+X)/SD) = 0.9911^335.41 = 0.04979</font></font>
<font color="black"><font face="Calibri">Вероятность достигнуть в игре отметки заданного банка в 200 000$ или проиграть его:</font></font>
<font color="black"><font face="Calibri">Вероятность успеха [“b”, прежде чем “a”] = ((1-(q/p)^(Y/SD))/(1-(q/p)^((Y+X)/SD)) = (1 – [a])/(1 – ) = ,63212/,9521 = 0,6652428</font></font>
<font color="black"><font face="Calibri">Риск [“b”, прежде чем “a”] = 1 - Вероятность успеха [“b”, прежде чем “a”] </font></font>
<font color="black"><font face="Calibri">Достижение удвоения, прежде поражения (проиграть Авангард, прежде чем удвоить Общий Банк): Игрок1 = 66,5248.%</font></font>
<font color="black"><font face="Calibri">Цифра дикая. Все потому, что риск ориентированного результата у Игрока_1 посчитан не до конца. В случае проигрыша Игроком_2 его банка – игра остановится, но у Игрока_1 помимо «Авангарда» существуют Тыловые Банки для его защиты и амортизации риска для банкролла в целом. В общем, напоминает реанимацию. Поэтому необходимо добавить к расчету риски тыловых банков. Итоговый результат для Игрока_1 будет:</font></font>
<font color="black"><font face="Calibri">Итоговый Риск [“b” прежде “a” Игрок_1] = Риск [“b” прежде “a”_Авангард] * Риск [Общий_Тыл_1] * Риск [Общий_Тыл_2] = ,3348… * ,3679… * ,1353… = 1,66666%</font></font>
<font color="black"><font face="Calibri">Вероятность успеха [“b” прежде “a” Игрок_1] = 98,33334%</font></font>
<font color="black"><font face="Calibri">Почему у «авангарда» считался риск ориентированного результата – это понятно, достигли результата (удвоения Банкролла) и игра остановилась. Но с тыловыми банками я посчитал нужным брать цифры Риск [Общий], так как достигнув ориентированных результатов мы не останавливаем игру и, более того, можем неоднократно вернуться к ним обратно. В принципе дистанция подтверждает, тк при устремлении заданных результатов в бесконечность итоговые вероятности Игрока_1 и Игрока_2 выравниваются, как и должно быть.</font></font>
<font color="black"><font face="Calibri">Далее</font></font><font color="black"><font face="Calibri">:</font></font>
<font color="black"><font face="Calibri">Short Term RISK OF RUIN formula (From D. Schlesinger's BLACKJACK ATTACK)</font></font>
<font color="black"><font face="Calibri">risk = N((B-ev)/sd) + e^((2*ev*B)/var) * N((B+ev)/sd)</font></font>
<font color="black"><font face="Calibri">В «переводе» пропишется примерно так (мне удобнее считать в $):</font></font>
<font color="black"><font face="Calibri">[3 ] Риск [Время] = N((Банк$-МО$*n)/(СКО$*(n^.5)))+exp(-2*МО$*Банк$/СКО$^2)*N((-Банк$+МО$*n)/(СКО*n^.5)))</font ></font>
<font color="black"><font face="Calibri">, где N – нормальное распределение (в экселе функция ‘нормстрасп’ или см.табличные функции нормального распределения); exp - тоже самое, что число ‘e’^…</font></font>
<font color="black"><font face="Calibri">Возьмем всеми любимую дистанцию (n) Numberoftests = D/EV^2. Для каждого банка у Игрока_1 («Авангард», «Тыл») считаем отдельно и затем перемножаем вероятности, в итоге получим:</font></font>
<font color="black"><font face="Calibri">Риск [Время_Общий] = Риск [Время_Авангард]* Риск [Время_Тыл1]* Риск [Время_Тыл2] = 0,3211820 * 0,3211820 * 0,0904178 = 0,93273%</font></font>
<font color="black"><font face="Verdana">___________________________________ </font></font>
<font color="black"><font face="Calibri">Теперь рассмотрим «плоскую» игру, Игрока_2. Банк тот же (100 000$) и Общие Риски берем те же, как и у Игрока_1, но банк не делим по частям, а играем плоской (всегда одинаковой) ставкой до удвоения капитала, либо поражения (проигрыша) Банкролла, так называемый «линейный риск». Здесь расчеты все также как и выше, только одним действием:</font></font>
<font color="black"><font face="Calibri">Bank 100 000$</font></font>
<font color="black"><font face="Calibri">Kelly = 1/2</font></font>
<font color="black"><font face="Calibri">Bank Kelly unit = D/EV/f = 1000</font></font>
<font color="black"><font face="Calibri">Ante = Bank$/Bank(unit) = 100$ </font></font><font color="black"><font face="Calibri">или</font></font><font color="black"><font face="Calibri">:</font></font>
<font color="black"><font face="Calibri">Opt_Kelly_Bet = Bank$*f*(EV/D) = 100$</font></font>
<font color="black"><font face="Calibri">Риск [Общий] = 1,8316%</font></font>
<font color="black"><font face="Calibri">Играем до удвоения капитала:</font></font>
<font color="black"><font face="Calibri">Риск [“b”, прежде чем “a”] = 1,7987% </font></font>
<font color="black"><font face="Calibri">Time Ror:</font></font>
<font color="black"><font face="Calibri">Риск [Время] = 0,42558%</font></font>
<font color="black"><font face="Calibri">Сравнивая итоговые результаты Игрока_1 и Игрока_2 (по [1],[2],[3]) видны незначительные различия в десятые доли процентов (пусть будут «проценты», так удобоваримее всем:grin:</font></font><font color="black"><font face="Calibri">) которые при незначительном увеличении дистанции или размера win_goal выравниваются, что я и хотел доказать.</font></font>
<font color="black"><font face="Calibri">Удачи.</font></font>
|
|
|