Re: О случайности и культуре дискуссий ID:48371 ответ на 48363 |
Вт, 4 сентября 2001 00:00 [#] |
|
|
Жаль, очень хотелось бы услышать комментарии как раз на тему рэндома.
Математическая модель BJ выглядит вполне симпатично, и, на мой взгляд,
если она и может оказаться несостоятельной, то именно из-за тасования
карт. Ну-ка, признавайтесь, как у вас симулятор карты тасует?
Цикл по всем и обмены со случайной позицией? Может и иначе, но уж точно
не как крупье. А он, кстати, особо не напрягается - я уверен, что если
дать ему миллион разобранных колод, заставить перетасовать один раз,
а результаты засунуть в анализатор, там никакого рэндома и близко не будет.
А окажется там что-то типа подмножества группы перестановок, причём
довольно бедной, на которое наложен небольшой шум. Ведь задача казино
состоит не в том, чтобы обеспечить случайность (ещё вопрос, нужна ли она
для максимизации прибылей и задумывается ли кто-нибудь об этом), а в том,
чтобы дезориентировать игрока, чтобы он не мог предсказать выход карт.
И даже с этим казино справляется не вполне, примеры сами вспомните.
Какая уж тут случайность...
Так что с одной стороны стороны красивая, обоснованная матмодель,
даже несколько моделей, согласующихся между собой, а с другой - реальная колода.
Причём, я же не спорю, что эти модели, если и не в точности описывают
реальность, то по крайней мере весьма близки к ней. Они советуют, например,
никогда не брать карту на 19. В это легко поверить, и это можно проверить,
разница будет разительная. Ничего себе - перебор в 11 случаях из 13!
Но, кроме этого, они говорят, что при определённых условиях следует
делать surrender на 16 против 9. А вот это, я утверждаю, на практике
проверить невозможно. Разница ничтожная, да и сама ситуация возникает редко.
Что же ответить человеку, который скажет, что surrender тут делать не надо?
Ну, например, что эта рекомендация получена из теории, которая правильно
работает в случаях, поддающихся экпериментальной проверке, которая выглядит
разумно и т. п. То есть мы по сути занялись экстраполяцией, мы убедились
в справедливости закона тяготения в Солнечной системе и теперь распространяем
его действие на другие звёзды, хотя никаких надёжных данных не имеется.
А вдруг небольшие отклонения всё-таки есть? Они не смогут повлиять на основные
правила БС, но вполне способны нарушить поведение игры в области ТОНКИХ эффектов.
Так вот, я утверждаю: проверить это не удастся.
Возьмём пример, приведённый Гришей. 50000 хэндов в год - окей.
Причём после 25000 ожидаемый выигрыш должен сравняться с отклонением.
Ну, например, наше преимущество 2%, ожидаемый выигрыш 500 ставок.
По условию, ожидаемое отклонение в этот момент +/- 500 ставок.
Мы надеемся, что выигрыш попадёт в диапазон 0-1000 ставок.
Допустим, реально было выиграно 400 ставок.
Ты удовлетворённо констатируешь: была небольшая отрицательная дисперсия,
на которой я потерял 100 ставок. А кто-то возражает: при твоей игре никакого
выигрыша не получается, а выиграл ты из-за заметного положительного отклонения
в +400 ставок. А ещё один заявляет: ничего подобного, это же счёт карт, здесь
перевес в целых 4%, а результат такой маленький потому, что возникла большая
отрицательная волна в -600 ставок. А менеджер вообще уверен: на BJ при любой
игре клиента перевес казино 2%, так что парень должен был проиграть 500 ставок,
но ему повезло поймать почти два стандартных отклонения в свою пользу, вот и выиграл.
Что, скажешь, нельзя нарваться на два отклонения?
Видишь, за полгода ты не можешь быть вполне уверен даже в единицах процентов,
какие уж там десятые!
Но, если потерпеть подольше, лет 50, то ожидаемый выигрыш увеличится в 100 раз,
а дисперсия только в 10.
То есть: 50,000(+/- 5,000).
Теперь уже результат в +40,000 кажется подозрительным, хотя и возможным,
а все вышеописанные товарищи вынуждены заткнуться, так как поверить в возможность
десятикратного отклонения затруднительно. А ты можешь быть уверен: да, я выигрываю,
явно больше 1% и меньше 3%, где-то около 2% или чуть меньше.
Ты пишешь:
>Поэтому нужно быть очень невезучим, чтобы при правильной игре
>быть в минусе после 50000 хэндов.
Конечно. Чтобы быть в минусе - да. А вот чтобы твой выигрыш совпал с расчётным
с точностью до десятых долей прцента - должно повезти.
И писал я не о том, что счёт карт не помогает выигрывать (я, кстати, верю,
что помогает), а о том, что невозможно убедиться, помогает ли он ТАК, как
предсказывает модель.
И ещё:
>1) Суммирование позиции Саши, согласно которой все доминирующие на данный
>момент теории по БД, включая БС, ошибочны, тем не менее в БД можно выиграть, но какими-то
>другими загадочными способами.
Позиция Саши с моей никак не связана. Саша подсчитал значение числа пи,
получил 6.26 и заявляет: "Не нравится моё пи - не пользуйтесь".
Я когда-то проверял вероятности набора разных очков дилером в зависимости
от первой карты, которые приведены в книжке Лесного - вроде всё сходится.
Только у него всегда 1/13, то есть бесконечная колода.
Но и на шести колодах получается почти то же самое.
>2) Собственная позиция Лорри – счет карт работает, но только в теории (на миллион
>раздач), а на практике этого не добиться, так как сыграть этот миллион раздач невозможно.
При чём тут "не добиться"? Я имел в виду "не проверить". Выиграть-то ты может м выиграешь,
но вряд ли именно столько, сколько предсказывает модель. И останется гадать, что это,
некорректность модели или причуды вероятности.
Удачи!
|
|
|