Re: Вероятность+диспа+количество попыток..... ID:19712 ответ на 19693 |
Пт, 30 июня 2006 21:08 [#] |
|
I will kill your set |
|
(иконки IM)
Форумы CasinoGames
|
|
Grey писал пт, 30 июня 2006 16:52 | Сейчас перечитал свежим взглядом твое сообщение и понял, что, возможно, речь идет не совсем о том, что я подумал. Ты имел в виду оуенные призы за несколько выигранных СНГ подряд? Тогда задачка решается по-другому и попроще. | Благодаря тебя я уже кое в чём разобрался,но если попытаться сформулировать более конкретно вопросы,на которые я ищу ответ,то
попробую это сделать:
1)Вероятность события 0,1 и мы делаем 10 испытаний.
Для сравнения берём событие с веорятностью 0,000001 и делаем 1000000
испытаний.
Если считать,что вероятность,что событие произойдёт за то количество испытаний,которые мы сделаем для него (10 и 1000000 соответственно) по формуле:
A=1-(1-p)^n
где p- вероятность события,n- количество испытаний,
то получается,что для 1-го и 2-го случая вероятность что событие произойдёт приблизительно одинаковая.Я не могу это понять и мне кажется,что нужно как-то учитывать дисперсию,которая для второго случая должна быть больше,но я конечно могу ошибаться.
2)У нас есть событие,вероятность которог 0,5 ,т.е. возможны два исхода удачный(у) и неудачный(н) мы делаем скажем три попытки и имеем
следующие варианты распределения удачных и неудачных исходов:
ннн
нну
нун
нуу
унн
уну
уун
ууу
К примеру нас интересуют только те случаи,когда два или более удачных события случаются подряд.
Из таблицы видно,что это случаи нуу,уун,ууу,т.е. их 3-и из восми всех возможных и я так понимаю,что вероятность того,что сделав три испытания,то вероятность того,что два удачных исхода произойдут подряд равна 3/8.Я правильно понимаю?
Вот для данного числа всех возможных число 8-это и есть биномиальный коэффициент,или нет?
Если возможных исходов 2-а,то количество возможных вариантов(X) за n
испытаний,будет:
X=n*2^n правильно?
А если исходов не два а другое число или нас устраивают скажем 5 из 13 вариантов исхода,то как тогда посчитать количество возможных вариантов для n испытаний?
А уж каким законам подчиняется распределение событий в серии из нескольких испытаний,мне ещё разбираться и разбираться,так что об этом даже и спрашивать неудобно.
|
|
|