Re: Формулирование математической задачи ID:15757 ответ на 15744 |
Ср, 7 сентября 2005 09:35 [#] |
|
|
Начнем с самого начала.
Во первых "Рулетка" имеет чисто математическое преимущество перед игроком. Данное преимущество достигается наличием сектора "0" ("0" и "00") на колесе рулетки, и сбалансированными выплатами по выигравшим ставкам.
Формулирование задачи:
Любая игровая система должна иметь чисто математическое преимущество перед КАЗИНО, при отридцательном математическом ожидании выигрыша.
На первый взгляд задача кажется парадоксальной, но простая система МАРТИНГЕЙЛ решает её. Предположим, что игрок не ограничен по пределу ставок МАХ/МИН, тогда имея достаточный денежный капитал игрок НИКОГДА не проиграет. При этом скорость выигрыша игроком составит 17/37 фишек за спин. Т.е. данная система наглядно демонстрирует, то что математическое преимущество может быть обеспеченно даже при отридцательном математическом ожидании выигрыша.
Но к сожалению предел ставки на игровом поле ограничен величиной МАХ/МИН. Обычно данная величина равна 10-50 на простые шансы.
Наращивание возможностей:
1. Расширение предела ставок МАХ/МИН.
Например на 6-Лине данное соотношение может быть увеличенно до 120-500. Но играть надо на 3х6-Лине=18 номеров, т.е. на виртуальные равные шансы. Да и 3 фишки на 6-лине как правило стоят меньше, чем 1 фишка на равные шансы. Т.е. игрок снижает сумму требуемого банка.
Рассмотрим критические параметры для системы МАРТИНГЕЙЛ.
Очевидно, что при серии последовательных проигрышей равной
Крит=log(MAX/MIN)/log(2)-1 игрок не сможет увеличить ставку, а значит проиграет сумму равную 2^log(MAX/MIN)/log(2).
При МАХ/МИН=150 критическим будет 8 проигрышей подряд.
Рассмотрим легкую модификацию системы МАРТИНГЕЙЛ:
Предположим, что игрок начинает увеличивать ставку только после второго проигрыша, т.е. по прогрессии: 1,1,2,4,8,16,32,64,.....
В данном случае система обеспечит выигрыш со скоростью около (8.5)/37 фишек за спин.
Крит=log(MAX/MIN)/log(2)-2 игрок не сможет увеличить ставку, а значит проиграет сумму равную 2^log(MAX/MIN)/log(2).
При МАХ/МИН=150 критическим будет 9 проигрышей подряд.
Вопрос: если снизить скорость выигрыша до +1/37 фишка за спин, какова будет длинна критической серии.
Выжный вывод: представим, что длинна серии проигрышей ограниченна величиной 4, т.е. в пределе после 1000 спинов 800 игрок приграет, а 200 выиграет, а денежный баланс будет +200(Мартингейл). Очевидно, что данный сценарий отношения выигрышей и проигрышей принципиально не возможен, но даже в данном случае МАРТИНГЕЙЛ одерживает уверенную победу.
Откуда: МАРТИНГЕЙЛ не боится отридцательного математического ожидания, а боится только длинных серий проигрышей.
|
|
|