Re: Скупой платит дважды, тупой платит трижды, лох платит постоянно! – Или, снова о Шкатулках ID:31835 ответ на 31791 |
Сб, 11 августа 2007 13:35 [#] |
|
|
Korovin писал сб, 11 августа 2007 13:51 | AVG51 писал сб, 11 августа 2007 13:49 | Тогда признай 2 вещи, которые ОЧЕВИДНО следуют из условия задачи. Если обозначить за Х меньшую из двух неизвестных сумм в шкатулке, то:
1) Верхняя граница Х в задаче не определена и может быть сколь угодно велика
2) Никаких данных о том, что Х является СВ в задаче нет | Признал. Что дальше? Ты признаеш что произвольная К МОЖЕТ оказатся между Х и 2Х? (ДА/НЕТ). | Для начала немного простой логики.
Между прочим, ты в тихушку ИЗМЕНИЛ условия задачи! Это НЕСПОРТИВНО!!! Поэтому напомню как она звучала в начале ветки:
Korovin писал сб, 26 мая 2007 02:55 | Итак, с чего все началось. В одной шкатулке в 2 раза больше денег чем в другой. Мы открыли одну из них, там 100$ открывать ли вторую? | Именно ЭТУ задачу я решал, а не ту, которую ты написал парой писем выше. Так что я буду и дальше разговаривать именно об этой задаче, а не про вариации на околозадачные темы.
Итак, Х у нас не является случайной величиной. Чтобы дать ответ на данную задачку, мы просто ВООБРАЖАЕМ что будет, если мы сделаем несколько подходов к данным шкатулкам. Однако, при этом мы опускаем одно важно УСЛОВИЕ ЗАДАЧИ - у нас открылось 100$ !!! А значит мы ОБЯЗАНЫ скорректировать наше воображение, так как мы можем оперировать парами 400/800 только в нашем воображении об этой задаче, ибо открылось у нас конкретная сумма в 100$ !!!
Ты это подсознательно чувствуешь пятой точкой, поэтому и изменил условие задачи, включив в неё такое невинное слово "допустим". Однако это слово дает нам возможность говорить о каких-то широких вариациях Х, а значит ты пытаешься тянуть одеяло в свою сторону - в сторону того, что Х является СВ. Но со мной данный трюк не пройдет!
Таким образом, для решения нашей КОНКРЕТНОЙ задачи нам нужно ВООБРАЗИТЬ несколько испытаний таким образом, чтобы мы не знали никаких исходов, кроме текущего. Например, к шкатулкам будут подходить разные люди, не знающие какая сумма была открыта для предыдущих игроков. И каждый человек будет видеть именно эти 100$ - СТРОГО ПО УСЛОВИЮ НАШЕЙ ЗАДАЧИ. То есть в нашей задаче Х может принимать только 2 значения - 50 и 100, и мы не знаем Х мы открыли или нет - мы знаем только то, что открылось у нас 100$.
А значит для данной исходной задачи твоя стратегия сводится к двум единственно возможным: всегда менять (если К>100$) или всегда не менять (если К<100$), а значит для этой задачи твоя стратегия это просто ПШИК.
Согласен?
Если согласен, то я могу со спокойной душой перейти к анализу твоей стратегии НЕ ДЛЯ НАШЕЙ ЗАДАЧИ, а для равномерного распределения случайной величины Х на заданном интервале значений. Вот при этих условиях твоя стратегия работает просто отлично.
ЗЫ Кстати, я попробую доказать, что тебя не спасает даже НЕСПОРТИВНО введенное тобой слово "допустим" в нашей исходной задаче
|
|
|