Re: ПНЕМВМОРУЛЕТКУ ТОЧНО МОЖНО ОБЫГРАТЬ!!! ID:18275 ответ на 14973 |
Чт, 9 марта 2006 16:11 [#] |
|
cool_cat |
|
(иконки IM)
Форумы CasinoGames
|
|
Korovin писал чт, 09 марта 2006 13:52 | Цитата: | Вероятность выпадения трех одинаковых чисел вподряд = (1/37)^3 | Вероятность выпадения допустим 12,7,34 тоже (1/37)^3. Почему когда такая последовательность выпадает, никто этому не удивляется??? | Если бы я до просмотра статистики игры, или до самой игры загадал последовательность "12,7,34" и "34,7,12" и затем в течении одного дня за 701 спин встретил их - я бы удивился ничуть не меньше.
Задним числом всегда можно найти нетиповые последовательности, вероятность которых такая же как у типовых. Так, на рулетке, всегда найдется дюжина чисел, которая не выпадала уже (37-12) = 25 раз! Никто этому не удивляется, так как это найдено задним числом, т.е. это свершившийся факт, это статистика, к расчету вероятности это не имеет никакого отношения. Но вот если бы Вы до игры загадали эти же 12 чисел и ни одно из них не выпало 25 раз вподряд впоследствии - этому бы уже стоило удивиться, согласны?
Т.е. для чистоты расчетов нужны какие-то последовательности, которые известны уже до анализа статистики или до начала игры. Может кто-то и использует для этого серии вида "12,7,34", но большинство людей используют интуитивно простые, заложеные самой рулеткой: все красные, все черные, все четные, все нечетные, повтор числа, повтор дюжины и т.д. и т.п.
В рассматриваемом случае с пневморулекой я взял типовую серию "повтор числа три раза". Число таких типовых последовательностей = 37 из (37^3) 50653 возможных. Далее нужно вспомнить комбинаторику и подсчитать число всевозможных комбинаций 706 спинов: в которых встречается типовая серия "повтор числа три раза" и общее число комбинаций. Поделив первое на второе получим, наверно, более точный результат, чем я привел выше, но все такую же маленькую вероятность данного события.
|
|
|