Просмотреть всю тему "Задачка без шкатулок :)" »»
Re: Задачка без шкатулок :)   ID:31854   ответ на 31853 Вс, 12 августа 2007 05:25 [#]
SunnyRay Форумы CasinoGames
Писать буду не очень подробно, всё-таки утро, спать пора Smile. Смысл в следующем:

Сначала определим, что даёт преимущество первого броска. Каждую отдельную монетку первый игрок получит с вероятностью 1/2+1/8+1/32+...=2/3, второй, соответственно, 1/3.

Следовательно, МО того, сколько денег получит первый бросающий, не зависит от номиналов монет, и равно 2/3 от общей суммы.

Так как от номиналов ничего не зависит (ну то есть не ничего, дисперсия зависит, например, но МО не зависит), стратегии игроков полностью определяются суммами.

Пусть первый игрок поставил Х коп., второй У.

МО для первого игрока равно:
2/3(Х+У)-Х = (2У-Х)/3, если Х>У,
1/3(Х+У)-Х = (У-2Х)/3, если Х<У,
0, если Х=У (этот случай неоговорён, но тут по любому ноль Smile).

При желании можно нарисовать таблицу с выигрышами в зависимости от стратегий (сумм) двух игроков. Нули будут при Х=У, Х=2У и 2Х=У, в четырёх секторах преимущество какого-то из игроков.

Дальше можно искать равновесные стратегии по Нэшу. Удаётся найти такую серию равновесных стратегий:

Ставить 1 копейку с вероятностью 1/2<=р<=1, 2 копейки с вероятностью 1-р. Для любого такого р эта стратегия будет равновесной.

В частном случае можно всегда ставить 1 копейку. Ставя одну копейку, игрок обеспечивает себе МО=0 в случае, если второй поставит 1 или 2 копейки, и МО>0, если тот поставит больше.

Любая другая стратегия бьётся.

Равновесное значение выигрыша, естественно, равно 0.

Вот такая фигня получается с точки зрения теории игр. Для применения как-то не очень годится, вероятность того, что побить могут, не учтена Smile