Просмотреть всю тему "Рулетка - это замкнутая система? (или что вы будете делать после длинной серии красных)" »»
Re: Рулетка - это замкнутая система? (или что вы будете делать после длинной серии красных)   ID:22820   ответ на 22778 Пн, 15 сентября 2008 23:00 [#]
alt2005 Закрыть блок (иконки IM) Форумы CasinoGames
Lacaba писал чт, 11 сентября 2008 20:54
Эта вероятность равна 0,000083, а вероятность того, что выпадет последовательность из 15 повторов равна 0,00004 т.е. где то в 2 раза меньше. Т.е. шанс увидеть последовательность из 14 повторов в 2 раза больше чем последовательность из 15 повторов, таким образом, мы получаем, что с каждым повтором цвета, увеличивается вероятность того, что последовательность повторов прервется.
Это абсолютно неверно. Вы правильно сказали, что вероятность выпадения последовательности в N+1 повтор меньше в 2 раза (точнее - около того), чем вероятность выпадения последовательности в N повторов. Но это справедливо, если мы рассматриваем предстоящие броски, т.е. будущее. А на N-м шаге уже нет никакого смысла говорить о "вероятности" последовательностей, поскольку последовательность из N шагов уже выпала. Это - прошлое, и если угодно, вероятность его равна 1. Имеет смысл говорить лишь о вер-ти выпадения следующего повтора, а это 18/37, как ни крути. Не обманывайте себя. Или уж тогда придумайте аксиоматику новой Теории вероятности...
Могу еще добавить. Вероятность невыпадения (ни разу) любого числа быстро падает по мере роста числа потенциальных бросков. Т.е. вероятность невыпадения, скажем, zero на след.броске = 36/37, вероятность невыпадения за 2 броска (36/37) ** 2 и т.д. Но опять же, об этом имет смысл говорить заранее, т.е. примерно так: вероятность, что zero не выпадет ни разу за 100 бросков (36/37) ** 100. Но это ничего не дает, скажем, для игры на прогрессиях. Потому что (к сожалению) такое вовсе не означает, что после 100 невыпадений вероятность появления zero будет P = 1 - (36/37) ** 101.