Re: Очередная тер вер задачка ID:29695 ответ на 29673 |
Пн, 31 октября 2005 09:52 [#] |
|
|
cassolete писал вс, 30 октября 2005 08:44 | Благодарю, это именно то, что мне нужно. Насчёт константы я действительно погорячился Вы не могли бы научить меня самому моделировать подобные числа? Потому что мне нужны средние числа попаданий для P от 0.2 до 0.96. Если , конечно, это Вас не затруднит. | Интересно, а как? Я могу дать текст проги. Но она под МatLab, а не под бейсик. Могу алгоритм дать.
А рандомайзеру для таких задач можно доверять любому. Главное, не перепутать нормальное распределение и равномерное.
cassolete писал вс, 30 октября 2005 08:44 | Кстати, 2:30 EST - это сколько по-нашему? | Не наю. Я сам в этом очень часто путаюсь.
Я тут так прикинул, похоже, что p/(1-p) действительно искомый ответ. Наверное, если брать предел, то так и получится. А пока можно считать это эмперически полученным результатом и спокойно пользоваться, пока кто-нить не опровергнет. Благо, моделирование подтверждает. Если нужно формальное доказательство, то надо предел считать.
I will kill your set
Нету такого члена как (1-p). Берется он отсюда: Вер-ть того, что мы N раз попадем и после этого промажем (нам ведь нужна законченная серия, а не просто N попаданий подряд) равна (1-p)*p^N.
Посмотрел еще раз формулу - что-то странное и на мой результат не очень похожее. У меня общий член прогрессии m*p^m, а у тебя просто p^m.
|
|
|