Просмотреть всю тему "Очередная тер вер задачка" »»
Re: Очередная тер вер задачка   ID:29684   ответ на 29673 Вс, 30 октября 2005 07:13 [#]
cassolete Форумы CasinoGames
RHnd писал сб, 29 октября 2005 22:10
Подумал еще раз. Похоже, правильный ответ был. Smile
Тока n-не число экспериментов, а число попаданий и делить на n не надо. Т.е. для каждого возможного результата числа попаданий N(от 0 до Inf есть его вер-ть (p^N)(1-p). Суммируя произведения результатов на их вер-ти получаем
lim {p*(1-p)*(1+p+2*p+3*p^2+...+n*p^[n-1])}
n->+Inf
При 0<p<1 предел, вроде,должен сходиться. Брать лень.Smile Если очень надо, то попробую подумать.
Мне кажется, что суммирование произведений результатов на их вер-ти ошибка. Это ведь не формула МО, и не формула расчёта средней арифметической взвешенной. Если подставлять конкретные значения P, то предел константы равен нулю. Если не подставлять, то вычислить предел такого ряда я не смогу, т.к. умею это делать только с рядами Маклорена и Тэйлора. К тому же, если этот предел высчитывается, и в ответе можно получить готовую формулу в виде зависимости числа попаданий подряд от P, то она наверняка есть в готовом виде.

2 I will kill your set
И про лук , и про шарик, и про орлянку - это одна и та же задача:)

Мои домыслы о расчёте свелись к следующему: составляем ряд распределения путём просчитывания для каждого(ограничимся 5тью) числа попаданий подряд их вероятности. Затем смотрим, какому числу попаданий соответствует значение 0.5. Это кривая логика, но на мой взгляд приближённо отражает реальную картину. Например, для вероятности 0.5 значению 0.5 соответствует значение 1. Т.е. в среднем , например, монетка падает решком 1 раз подряд. Хотя любой математик мне объяснит, что смешно для примера брать вероятность 0.5 , потому что слишком много несвязанных совпадений можно получить , манипулируя этими 0.5 в разных формулах подсчёта различных вероятностей, связанных с этой величиной Smile