Просмотреть всю тему "Сравнение БД и покера" »»
Re: Сравнение БД и покера   ID:9092   ответ на 9009 Пт, 19 марта 2004 12:01 [#]
Миша Закрыть блок (иконки IM) Форумы CasinoGames
Zet, привет.

По ответу на п.1. - согласен. Апроксимация показательной функции параболой, (т.е. линейная
зависимость ROR от D или квадратичная от размера ставки), возможна только на ограниченном участке ОО. Принято.

По ответу на п.2.
а) Если 10 000 это в евро, а минималка, скажем, 10 или даже 100 евро то за 100 сдач SCORE не получится.
б) Сразу становится непонятной ед. изм. А и N0.
в) Или я не понял шутку или 10 000 - это все-таки минимальных ставок, тогда мои комментарии (п.2)
становятся уместны.

По ответу на п.3. Нет двух дисперсий : одна - момент второго порядка, другая - среднее изменение ставки за счет возможных сплитов и даблов. Я поэтому и возражал против такой трактовки f.

По ответу на п.4. Извини, но озвучивание формулы для ковариации рук, я бы разжевыванием не назвал. Проблема именно в расчете. АНАЛИТИЧЕСКИ это чрезвычайно сложно, полагаю ее никто и не расчитывает. (Вонг, например, писал, что симулировал, для джека, конечно).


К сожалению, не нашел где Jack давал ссылку. Могу лишь догадываться по твоим комментариям, что речь идет о переведенной статье Э. Торпа на инвесто.ру. (Читал около полутора лет назад).

> Счет +3 , прейм. +1.4% , частота 0,050 . Ставка = 0.050 * [0.5070*log(1+b3) + 0.4930*log(1-b3)]

1. Эта формула (в статье Торпа - 5.2) для случая бросания монеты - без стэй. (0,507 и 0,493 для джека не годятся, поскольку не соответствуют P выигр./проигр.).
2. Судя потому, что ты исключил из формулы второе слагаемое, ты предполагаешь отсутствие ставки при неблагоприятной ситуации, т.е. вонгинг. Мы же говорили о сравнении доходности РЕАЛЬНЫХ игр, причем с учетом времени получения дохода.
3. Дискретность ставок сведет на нет (имхо) точность такого расчета, даже если он будет выполнен.

> Впечатляет ?

Нет! И вот почему. Я всегда приветствую, когда строгие математические доказательства приводят к некой итоговой цифре (или результату). Но, что мы имеем ? Да, есть методика расчета оптимальной ставки, есть формулы, рассмотрены несколько примеров с монетой. Но дальше - тупик. (Обрати внимание в конце этой статьи Торп предлагает для случая нескольких благоприятных ситуаций использовать “стандартные мультипеременные методы оптимизации”).

Для определения оптимального размера ставки на джеке в реальной игре (про покер - молчу) Jack предлагает МО*банк делить на вероятное увеличение размера ставки, ты - делить на дисперсию, оговаривая при этом, что это не обычная, а некая другая (нормированная, приведенная к размеру ставки) дисперсия. Торп, в случае, если все ставки имеют положительное ожидание - не делить, т.е. МО*банк. Вонг - делить на величину - изменение возможных исходов (не ручаюсь за точность формулировки), полученную моделированием. В итоге приходим к симуляциям, получению МО (total), ср. размера ставки и риска. Т.е. цифр риска и усредненной доходности реальной игры.

Напрашивается такой пример : “стопроцентный покер”, 999 из 1000 возможных равновероятных исходов - минус 1 анте, 1 исход - плюс 1999 анте. Обменов, докупок, покупок игры, страховок и пр. нет., т.е. ставка строго фиксирована и не может быть изменена. Очевидно, что в знаменателе формулы для расчета оптимальной ставки никакого “изменения размера ставки” не будет.

Резюме : теоретический подход к определению оптимального размера ставки не должен отличаться для различных правил и игр. Либо конечная формула - точна и едина для разных случаев, либо она упрощена и оценивает размер ставки приближенно, тогда она (формула) не может претендовать на строгость и общность.

Удачи.
Миша.