Re: Пристрастие колеса ID:17565 ответ на 17544 |
Чт, 26 января 2006 11:39 [#] |
|
|
Бинго!
Ответ в книге: р=0,105
Посему, ответ от Korovin признается верным!
В то же время именно CLON первым предложил хотя и незаконченную но ОСНОВОПОЛАГАЮЩЕ вычислении во всей этой задаче: (1-0.04336)^37=0.1939527 где подставив более верную цифру получаем (1-0.003)^37=0,895. Думаю вы догадались, что от чего нужно еще отнять, чтобы получить 0,105.
Именно предложенные CLON-ом «37 процентов», напрочь отсутствуют в иностранных публикациях на заданную тему. Основываясь на материал общепризнанных «библий рулетки» (книг от Christopher Pawlicki, Martien Jensen), данная задача решалась бы примерно с теми же результатами, что и у нас в начале (p=0.003, р=0.043), и на их основаниях делался бы вывод, что колесо имеет сильнейшее пристрастие.
Еще раз обратить внимание на порядок ошибки:
р=0.105 и p=0.003 – как вы понимаете - «небо» и «земля».
Здесь делаем вывод, что в итоге Клон и Коровин оказались большими специалистами в теории пристрастно колеса, чем все авторы книг типа «Get edge at roulette», что и следовало доказать.
Из «профессии», я читал только одну главу «Пристрастие колеса». Если начну рассказывать о чем она, то опять же получится обалденная реклама, поэтому сначала нужно позвонить автору и спросить у него за ето денежку.
|
|
|