Не знаю какую собаку Вы ели на форуме Гранда, но явно не ту!
Рассмотрим несколько простых задач-примеров.
Как расчитать вероятность повтора числа?
Вероятность повтора заранее заданого числа равна р=(1/37)^2=1/1369.
Вероятность повтора любого числа равна: р=1/37 (думаю это очевидно).
Вероятность повтора заранее заданого числа 3 раза равна: р=(1/37)^3.
Вероятность повтора любого числа 3 раза равна: р=(1/37)^2=1/1369.
Тогда для 700 спинов получим (частоту повторов): Ч=700/1369=0.5113.
Вероятность повтора любого числа 3 раза на 700 спинах равна: р=(1-(1/37)^2)^700=0.59959.
Вероятность выпадения 2-х повторов любых чисел 3 раза на 700 спинах равна: р=[1-(1-(1/37)^2)^700]^2=0.160328.
О каких 14.5 годах можно говорить?????? Если данное событие является рядовым и обыденным: повтор 3-ки любых номеров 6 раз за 10 дней, повтор 2-х 3-ек любых номеров 1 раз за 6 дней.
ЗЫ: Полученные величины можно расчитать и так:
1. вероятность НЕ повтора тройки заданного номера р=(1-1/37^3)^700=0.9862275399,
2. вероятность повтора тройки любого номера р=[(1-1/37^3)^700]^37=0.599699144.
3. Вероятность Повтора 2-х любых троек: р=(1-р)^2=0.16024
Cool-cat если у Вас есть сомнения предлагаю взять статистику за 30 дней и "тупо" посчитать количество повторов 2-х номеров и количество повторов 3-х номеров. Эксперимент может проходить и на РНД генераторе компа. Думаю результат подтвердит полученный теоретически результаты.
ЗЫ: О 300% - это был анализ не вероятности, а частоты событий.