Страницы(11): [ «  <  #  1  2  3  4  5  6  7  8  9  10  11  >  »]   Перейти вниз
Re: Еще пара задачек для интересующихся   ID:30193   ответ на 30153 Вс, 21 мая 2006 20:03 («] [#] [»)
CorwinXX Форумы CasinoGames
Цитата:
Еще раз глянул повнимательнее на твой алгоритм (тогда я просто играл 4 стола) и увидел в нем сейчас ошибку: допустим 1 2 3 4 > 5 6 7 8
Дальше ты взвешиваешь 1 2 12(правильный шар) и 5 6 7. Результат опять больше (меньше он быть и не может-это рассматривать в твоем алгоритме вообще не нужно). Ты в тупике перед 3м взвешиванием.
У меня нет такого. У меня:

Цитата:
1.2. <
1-2 12 ~ 3 4 5
не 5 6 7, а 3 4 5
То есть, убираем один шар с левой чаши весов и два с правой, один перекладываем с левой на правую, добавлюяем на левую заведомо правильный шар.


Цитата:
1.1.2.3. >
=> 12
Тут опечатка.
        
 
Re: Еще пара задачек для интересующихся   ID:30194   ответ на 30153 Вс, 21 мая 2006 21:46 («] [#] [»)
Gump Форумы CasinoGames
CorwinXX писал вс, 21 мая 2006 21:03
У меня нет такого. У меня:

Цитата:
1.2. <
1-2 12 ~ 3 4 5
не 5 6 7, а 3 4 5
Corwin сорь. Здесь уже я невнимательно посмотрел. Просто я думал, что второе взвешиание должно быть только типа 1 2 5 и 3 6 12, т.е взвешиваются 3 шара с левой и 2 с правой чаши, но по одному шару с чаши переносится на другую.
        
 
Re: Еще пара задачек для интересующихся   ID:30212   ответ на 30153 Вт, 13 июня 2006 17:05 («] [#] [»)
apollon2 Форумы CasinoGames
Да смотрю прикольненикие задачки вы тут решаете.
Молодцы!
        
 
Re: Еще пара задачек для интересующихся   ID:30336   ответ на 30153 Пт, 21 июля 2006 12:51 («] [#] [»)
Larry Форумы CasinoGames
Честно говоря, тяжело было сориентироваться в предложенном алгоритме.Smile
А алгоритм, должен быть простым в восприятии. Smile Предложу свой Smile. Если это повторение предложенного Корвином, не пинайте, я не смог разобраться в том обилии сухих математических знаков.
Первое взвешивание:
взвешиваем 4 и 4 шара.
Второе:
независимо от результата 1-го взвешивания, перекладываем 3 шара с 1-й чаши на вторую, а на их место - 3 нетронутых шара. Со второй чаши - 3 "старых" шара снимаем.
____________
Иногда, уже на этом этапе можно назвать "неправильный" шар.
____________
Далее, в зависимости от рез-тов.
<font color="skyblue">Если 1 и 2 попытки не пертянули чашу весов</font>, то нетронутый шар дефектен (можем использовать 3-е взвешивание, если интересно:он тяжелее или легче эталонных. Smile
<font color="skyblue">Если первый и второй раз первая чаша тяжелее или легче, неважно, главное , что результат тот же.</font>
Значит неправильный шар один их тех, которые не перекладывали. Просто взвесим любой из них (назовем их А и Б) с любым из 10-ти остальных. Если равенство, а взвешивали А-шар, то дефект в Б. Если неравентсво, то дефект в А.
<font color="skyblue">Если в 1-м взвешивании 1 чаша тяжелее(легче), а во 2-м наоборот, легче (тяжелее)</font>
Дефектный шар находится среди 3-х перекладываемых шаров с 1-й чаши и он тяжелее (легче), чем все остальные. просто взвешиваем 2 шара из этих 3-х. Критерий нам уже известен. Если равенство, то дефектен третий шар.
<font color="skyblue">Если 1-я попытка - равенство, а во второй 1-я чаша стала тяжелее (легче)</font>
Значит изъян в трех шарах которых не было в первой попытке. Один из них тяжелее(легче) отсальных. Взвешиваем любые 2 из этих трех. Критерий известен.
<font color="skyblue">Первая попытка - неравенство, вторая - равенство.</font>
Дефектный, один из трех шаров, которые убрали с весов. Взвешиваем 2 из них. Критерий - критерий неравенства в 1-м взвешивании.

З.Ы. Перечитал, не намного он (алгоритм) проще в восприятии чем тот, который предложил Корвин. Но этот я, по крайней мере, понимаю. Very Happy
        
 
Re: Еще пара задачек для интересующихся   ID:30337   ответ на 30153 Пт, 21 июля 2006 13:54 («] [#] [»)
CLON Форумы CasinoGames
Вспомнил "старую" веселую задачку о шахматной доске и домино.

Задача:

На шахматной доске выбираем случайно две белые (или две черные клетки). Обычно выбирают диагональные а1 и н8. Остальные клетки шахматной доски требуется закрыть камнями домино так, что каждый камень домино закрывает только две соседние клетки шахматной доски. Сколько всего вариантов закрытия шахматной доски существует?

Решение обосновать. Smile

Желаю успехов.
        
 
Re: Еще пара задачек для интересующихся   ID:30340   ответ на 30153 Сб, 22 июля 2006 12:32 («] [#] [»)
Sharky Форумы CasinoGames
465? Rolling Eyes
        
 
Re: Еще пара задачек для интересующихся   ID:30341   ответ на 30153 Сб, 22 июля 2006 13:33 («] [#] [»)
CLON Форумы CasinoGames
Sharky писал сб, 22 июля 2006 13:32
465? Rolling Eyes
Нет. Не верно.

На вскидку - на шахматной доске 64 клетки. 2 убрали, осталось 62 клетки. Значит требуется 31 кость домино. Каждая кость может иметь несколько положений относительно клетки, в зависимости от координаты клетки. Максимум 4 положения, минимум 2 положения. Вот и считайте.

Хотя ответ получить очень просто, просто надо не много подумать. Smile

А еще лучше попробуй решить задачу графически. Smile
        
 
Re: Еще пара задачек для интересующихся   ID:30383   ответ на 30153 Пт, 4 августа 2006 17:47 («] [#] [»)
SunnyRay Форумы CasinoGames
Ровно ноль Smile. Всё-таки 30 чёрных и 32 белых клеток будет непросто накрыть камнями, закрывающими по одной чёрной и белой клетке Very Happy
        
 
Re: Еще пара задачек для интересующихся   ID:30384   ответ на 30153 Пт, 4 августа 2006 17:59 («] [#] [»)
SunnyRay Форумы CasinoGames
Говорят, этой задачкой проверяли детей при наборе в 1-ый класс в какой-то школе. Какая последняя цифра?

Корова - 2
Коза - 2
Овца - 2
Кошка - 3
Собака - 3
Свинья - 3
Кукушка - 4
Петух - 8
Ослик - ?

PS: Я минут 10 думал, и это не худший результат среди моих знакомых.
        
 
Re: Еще пара задачек для интересующихся   ID:30385   ответ на 30153 Пт, 4 августа 2006 19:26 («] [#] [»)
Sharky Форумы CasinoGames
SunnyRay писал пт, 04 августа 2006 17:59
Ослик - ?
2
        
 
Re: Еще пара задачек для интересующихся   ID:30386   ответ на 30153 Сб, 5 августа 2006 10:24 («] [#] [»)
CLON Форумы CasinoGames
SunnyRay писал пт, 04 августа 2006 18:47
Ровно ноль Smile. Всё-таки 30 чёрных и 32 белых клеток будет непросто накрыть камнями, закрывающими по одной чёрной и белой клетке Very Happy
Бинго. Аболютно верно. Задача не имеет решения.

Имеется 30 одного цвета и 32 другого. Каждый камень закрывает две разноцветных клетки. После установки 30 камней останется только 2 поля одного цвета, которые закрыть 1 камнем невозможно.

Поэтому задача не имеет решения. Правильный ответ 0.


        
 
Re: Еще пара задачек для интересующихся   ID:30387   ответ на 30153 Сб, 5 августа 2006 11:41 («] [#] [»)
LuckinG Форумы CasinoGames
ослик - 2... Confused
        
 
Re: Еще пара задачек для интересующихся   ID:30388   ответ на 30153 Пн, 7 августа 2006 15:07 («] [#] [»)
SunnyRay Форумы CasinoGames
Правильно, 2. Задача простая, но для 6 лет Confused

А вот ещё одна про шахматную доску.

Есть клетчатая доска 5*5. Пешка ходит на одну клетку по горизонтали или вертикали. Можно ли обойти доску, побывав в каждой клетке по одному разу и вернувшись в исходную? Если да, как, если нет, почему?
        
 
Re: Еще пара задачек для интересующихся   ID:30389   ответ на 30153 Пн, 7 августа 2006 15:21 («] [#] [»)
CLON Форумы CasinoGames
Обойти можно все клетки, но вернуться в начальную точку принципиально не возможно.

Задача не имеет решений.

ЗЫ: Без доказательства.
        
 
Re: Еще пара задачек для интересующихся   ID:30390   ответ на 30153 Пн, 7 августа 2006 15:26 («] [#] [»)
Sharky Форумы CasinoGames
SunnyRay писал пн, 07 августа 2006 15:07
Правильно, 2. Задача простая, но для 6 лет Confused
Я эту "задачу" решил быстро.. Однако рассказал своему шефу (академик), он ее не решил, когда объяснил про МУ, про ИА, он вначале подумал, а потом сказал: что тому, кто эту задачу придумал, нужно вбить в голову гвоздь... Smile Я его не понял если честно.. Smile
        
 
Re: Еще пара задачек для интересующихся   ID:30391   ответ на 30153 Пн, 7 августа 2006 17:13 («] [#] [»)
tigra_7 Форумы CasinoGames
Цитата:
Есть клетчатая доска 5*5. Пешка ходит на одну клетку по горизонтали или вертикали. Можно ли обойти доску, побывав в каждой клетке по одному разу и вернувшись в исходную? Если да, как, если нет, почему?
Нет. Раскрасим в шахматном порядке доску в черно-белый цвет. Начиная из чёрной ( к примеру) клетки, обойдя всю доску по предложенным правилам, мы сделаем 24 хода. То есть остановимся на чёрной же клетек и перейти в чёрную ещё одним ходом не можем.
        
 
Re: Еще пара задачек для интересующихся   ID:30392   ответ на 30153 Пн, 7 августа 2006 17:16 («] [#] [»)
SunnyRay Форумы CasinoGames
tigra, CLON
Всё верно.

Sharky писал пн, 07 августа 2006 16:26
Я эту "задачу" решил быстро.. Однако рассказал своему шефу (академик), он ее не решил, когда объяснил про МУ, про ИА, он вначале подумал, а потом сказал: что тому, кто эту задачу придумал, нужно вбить в голову гвоздь... Smile Я его не понял если честно.. Smile
Он, небось, все гласные, согласные, морфемы, фонемы пересчитал, на японский перевёл, в ряд Фурье разложил и проинтегрировал, а тут ИА Smile

Интересно, а вот за эту тоже надо гвоздь вбивать?

К реке подошли два человека. Один весит 50 кг, другой 70 кг. Есть одна лодка грузоподъёмностью 100 кг. Больше ничего нет, никаких верёвок и прочего. Они оба переплыли на другой берег, не замочившись. Как им это удалось?
        
 
Re: Еще пара задачек для интересующихся   ID:30393   ответ на 30153 Пн, 7 августа 2006 17:21 («] [#] [»)
LuckinG Форумы CasinoGames
SunnyRay писал пн, 07 августа 2006 18:16
tigra, CLON
Всё верно.

Sharky писал пн, 07 августа 2006 16:26
Я эту "задачу" решил быстро.. Однако рассказал своему шефу (академик), он ее не решил, когда объяснил про МУ, про ИА, он вначале подумал, а потом сказал: что тому, кто эту задачу придумал, нужно вбить в голову гвоздь... Smile Я его не понял если честно.. Smile
Он, небось, все гласные, согласные, морфемы, фонемы пересчитал, на японский перевёл, в ряд Фурье разложил и проинтегрировал, а тут ИА Smile

Интересно, а вот за эту тоже надо гвоздь вбивать?

К реке подошли два человека. Один весит 50 кг, другой 70 кг. Есть одна лодка грузоподъёмностью 100 кг. Больше ничего нет, никаких верёвок и прочего. Они оба переплыли на ней на другой берег, не замочившись. Как им это удалось?
наверно с разных берегов подошли?
        
 
Re: Еще пара задачек для интересующихся   ID:30394   ответ на 30153 Пн, 7 августа 2006 17:28 («] [#] [»)
SunnyRay Форумы CasinoGames
LuckinG писал пн, 07 августа 2006 18:21
наверно с разных берегов подошли?
Ага. На гвоздь не тянет, да? Smile
        
 
Re: Еще пара задачек для интересующихся   ID:30395   ответ на 30153 Пн, 7 августа 2006 17:53 («] [#] [»)
LuckinG Форумы CasinoGames
надо было какие нибудь бесполезные преспособления им дать Smile
        
 
Страницы(11): [ «  <  #  1  2  3  4  5  6  7  8  9  10  11  >  »]  
Предыдущая тема:игровые туры
Следующая тема:Игра "сейф". Нужна помощь математиков.
Быстрый переход к форуму
  
Текстовая версия  RSS лента
Вернуться вверх

Текущее время: Пт, 13 декабря 00:56:00 2024
Время, затраченное на генерацию страницы: 0.02217 секунд