Re: "Лидерство со старта". Прав ли Натанссон? ID:17460 ответ на 16218 |
Пт, 20 января 2006 10:56 («] [#] [») |
|
|
Цитата с сайта:
Биарриц или система Макарова
Достаточно простую систему, названную в своё время по имени французского курорта, совершенно независимо от других её авторов предложил Александр Макаров, разработавший известную компьютерную программу “Марьяж” и часто использующий в своей работе математический метод, известный как монте-карловское моделирование. Эта система относится к разряду агрессивных.
Ставка всегда делается на один и тот же номер. Выплата в случае выигрыша – 35:1. При неудаче ставка повторяется. Величина ставки постоянна, допустим, $1. Игрок завершает серию испытаний либо после первого же появления своего номера, либо после 36 неудачных запусков. Возможные следующие варианты:
Счастливый для игрока номер выпадает ровно на 36-м испытании. Игрок остаётся при своих, т.к. выигрыш $35 компенсирует предыдущие 35 неудач.
Счастливый номер выпадает раньше. Чем быстрее это случится, тем больше доход игрока.
Счастливый номер не выпадает ни разу. Игрок проигрывает $36.
Вероятность последнего события – (36/37)36, т.е. примерно 0,37. Поэтому вероятность того, что после первой серии испытаний игрок окажется в выигрыше, существенно выше 50%. Перед нами ещё одна система, рассчитанная на лидерство “со старта”.
Старинная версия системы Биарриц предписывает дополнительно проводить предварительные статистические исследования: наблюдать за ходом игры в течение 111 запусков (3 раза по 37) и ставить на тот номер, который выпадал менее трёх раз. Конечно, с точки зрения математики, эта рекомендация не выдерживает критики, поскольку у шарика нет памяти и в любой момент времени, независимо от того, что выпадало раньше, все события равновероятны. С другой стороны, предварительные статистические исследования могут выявить плохую отрегулированность самого колеса рулетки: какие-то номера выпадают реже других или не выпадают совсем. Но в этом случае, тем более, нет никакого смысла ставить на те номера, которые не выпадают в силу каких-то внутренних перекосов рулетки.
|
|
|